top of page

 

Güneş enerjisi, güneşin çekirdeğinde yer alan füzyon süreci ile (hidrojen gazının helyuma dönüşmesi) açığa çıkan ışıma enerjisidir. Dünya atmosferinin dışında güneş enerjisinin şiddeti, yaklaşık olarak 1370 W/m² değerindedir, ancak yeryüzüne ulaşan miktarı atmosferden dolayı 0-1100 W/m2 değerleri arasında değişim gösterir. Bu enerjinin dünyaya gelen küçük bir bölümü dahi, insanlığın mevcut enerji tüketiminden kat kat fazladır. Güneş enerjisinden yararlanma konusundaki çalışmalar özellikle 1970'lerden sonra hız kazanmış, güneş enerjisi sistemleri teknolojik olarak ilerleme ve maliyet bakımından düşme göstermiş, çevresel olarak temiz bir enerji kaynağı olarak kendini kabul ettirmiştir.

 

Güneş enerjisi kullanarak elektrik üretimi, bugünlerde sıkça konuşulan yenilenebilir enerji kaynağı uygulamalarının oldukça popüler olan bir çeşididir. Bol olması, bedava olması, işletme maliyetinin düşük olması ve çevre kirliliğine yol açmaması gibi birçok iyi nedenden dolayı yatırımcıların dikkatini çekmektedir. 

Fotovoltaik hücreler pek çok farklı maddeden yararlanarak üretilebilir. Günümüzde en çok kullanılan maddeler şunlardır:

 

Kristal Silisyum: Önce büyütülüp daha sonra 150-200 mikron kalınlıkta ince tabakalar halinde dilimlenen Tek kristal Silisyum bloklardan üretilen güneş pillerinde laboratuar şartlarında %24, ticari modüllerde ise %15'in üzerinde verim elde edilmektedir. Dökme silisyum bloklardan dilimlenerek elde edilen Çok kristal Silisyum güneş pilleri ise daha ucuza üretilmekte, ancak verim de %2-5 kadar düşük olmaktadır. Verim, laboratuar şartlarında %18, ticari modüllerde ise %14 civarındadır.

 

Galyum Arsenit(GaAs): Bu malzemeyle laboratuar şartlarında %25 ve %28 (optik yoğunlaştırıcılı) verim elde edilmektedir. Diğer yarıiletkenlerle birlikte oluşturulan çok eklemli GaAs pillerde %30 verim elde edilmiştir. GaAs güneş pilleri uzay uygulamalarında ve optik yoğunlaştırıcılı sistemlerde kullanılmaktadır.

 

Amorf Silisyum: Kristal yapı özelliği göstermeyen bu Si pillerden elde edilen verim %10 dolayında, ticari modüllerde ise %5-7 mertebesindedir. Günümüzde daha çok küçük elektronik cihazların güç kaynağı olarak kullanılan amorf silisyum direkt güneş ışınımı az olan bölgelerde de santral uygulamalarında kullanılmaktadır. Amorf silisyumun bir başka önemli uygulama sahası ise binalara entegre yarısaydam cam yüzeyler, bina dış koruyucusu ve enerji üreteci uygulamalarıdır.

 

Kadmiyum Tellürid(CdTe): Çok kristal yapıda bir malzeme olan CdTe ile güneş hücre maliyetinin çok aşağılara çekileceği tahmin edilmektedir. Laboratuar tipi küçük hücrelerde %16, ticari tip modüllerde ise %7 civarında verim elde edilmektedir.

 

Bakır İndiyum Diselenid(CuInSe2): Bu çokkristal hücre laboratuar şartlarında %17,7 ve enerji üretimi amaçlı geliştirilmiş olan prototip bir modülde ise %10,2 verim elde edilmiştir. Optik Yoğunlaştırıcılı Hücreler: Gelen ışığı 10-500 kat oranlarda yoğunlaştıran mercekli veya yansıtıcılı araçlarla modül verimi %20'nin, hücre verimi ise %30'un üzerine çıkılabilmektedir. Yoğunlaştırıcılar basit ve ucuz plastik malzemeden veya camdan yapılmaktadır.

Şebeke bağlantılı fotovoltaik sistemler yüksek güçte-satral boyutunda sistemler şeklinde olabileceği gibi daha çok görülen uygulaması binalarda küçük güçlü kullanım şeklindedir. Bu sistemlerde örneğin bir konutun elektrik gereksinimi karşılanırken, üretilen fazla enerji elektrik şebekesine verilir, yeterli enerjinin üretilmediği durumlarda ise şebekeden enerji alınır. Böyle bir sistemde enerji depolaması yapmaya gerek yoktur, yalnızca üretilen DC elektriğin, AC elektriğe çevrilmesi ve şebeke uyumlu olması yeterlidir.

Fotovoltaik sistemlerin şebekeden bağımsız (stand-alone) olarak kullanıldığı tipik uygulama alanları aşağıda sıralanmıştır.
- Haberleşme istasyonları, kırsal radyo, telsiz ve telefon sistemleri
- Petrol boru hatlarının katodik koruması
- Metal yapıların (köprüler, kuleler vb) korozyondan koruması
- Elektrik ve su dağıtım sistemlerinde yapılan telemetrik ölçümler, hava gözlem istasyonları
- Bina içi ya da dışı aydınlatma
- Dağevleri ya da yerleşim yerlerinden uzaktaki evlerde TV, radyo, buzdolabı gibi elektrikli aygıtların çalıştırılması
- Tarımsal sulama ya da ev kullanımı amacıyla su pompajı
- Orman gözetleme kuleleri
- Deniz fenerleri
- İlkyardım, alarm ve güvenlik sistemleri
- Deprem ve hava gözlem istasyonları
- İlaç ve aşı soğutma

Güneş enerjisinden elektrik üretmek için kurulacak bir sistemde akü grubu, akü şarj regülatörü, evirici ve yardımcı elektronik devreler bulunabilir. Tabi ki uygulamaya göre bu bileşenler değişiklik gösterebilir. İstenen enerji miktarına göre güneş paneli ve sayısı belirlenir. Güneş olmadığı zamanlarda enerjisiz kalmamak için akü grubu sisteme dahil edilir. Akünün aşırı şarj ve deşarj olarak zarar görmesini engellemek için akü şarj regülatörü kullanılır. Şarj regülatörü akünün durumuna göre, güneş pillerinden gelen akımı keser ya da yükün çektiği akımı keser. Evirici, alternatif akım istenen uygulamalarda panelde elde edilen doğru akım elektriğini alternatif akım elektriğine dönüştürmek için kullanılır. İstenirse sisteme bir de maksimum güç noktası izleyicisi (MPPT) eklenebilir.

Güneş ışınlarını elektrik enerjisine çeviren cihazdır. Verimleri panel tipine göre değişmekle birlikte % 15-20 arasındadır. Ülkemizde pratikte güneşlenme süresi yılda yaklaşık olarak gün bazında 5.5 saattir. 

 

Paneller, ortam koşullarının elverişli olması durumunda nominal güçlerini üretebilirler. Panel camının kirli olması, güneş ışınlarının geliş açısının dik olmaması, havanın çok sıcak olması panel verimini düşürecektir. 

Güneş panelinden gelen akımı ayarlayarak akünün tam dolmasını veya tamamen boşalmasını engeller. Tüketici için gerekli akım değerine göre sistemde uyumlu çalışabilecek tipte seçilmesi gereklidir. Ayrıca akü şarj regülatörünün, akü gerilimine uyumlu olması gerekmektedir. Şarj regülatöründen direkt doğru akım çıkışı alınabilir. Çoğu regülatörde şarj durumuna ait sayısal bilgileri gösteren ekran bulunmaktadır.

bottom of page